Search Bounds for Zeros of Polynomials over the Algebraic Closure of Q

نویسنده

  • LENNY FUKSHANSKY
چکیده

We discuss existence of explicit search bounds for zeros of polynomials with coefficients in a number field. Our main result is a theorem about the existence of polynomial zeros of small height over the field of algebraic numbers outside of unions of subspaces. All bounds on the height are explicit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Height Bounds on Zeros of Quadratic Forms Over Q-bar

In this paper we establish three results on small-height zeros of quadratic polynomials over Q. For a single quadratic form in N ≥ 2 variables on a subspace of Q , we prove an upper bound on the height of a smallest nontrivial zero outside of an algebraic set under the assumption that such a zero exists. For a system of k quadratic forms on an L-dimensional subspace of Q , N ≥ L ≥ k(k+1) 2 + 1,...

متن کامل

Domain of attraction of normal law and zeros of random polynomials

Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...

متن کامل

On the Real Zeros of Weighted q-Euler Polynomials

Using computer, a realistic study for new analogs of weighted q-Euler numbers and polynomials is very interesting. It is the aim of this paper to observe an interesting phenomenon of ‘scattering’ of the zeros of the weighted q-Euler polynomials E (α) n,q (x). The outline of this paper is as follows. In Section 2, we study weighted q-Euler polynomials E (α) n,q (x). In Section 3, we describe the...

متن کامل

An Approximation Algorithm for the Number of Zeros of Arbitrary Polynomials over GF[q]

We design the rst polynomial time (for an arbitrary and xed eld GFq]) (;)-approximation algorithm for the number of zeros of arbitrary polynomial f(x 1 ; : : :; x n) over GFq]. It gives the rst eecient method for estimating the number of zeros and nonzeros of multivariate polynomials over small nite elds other than GF2] (like GF3]), the case important for various circuit approximation technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006